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Abstract
The plane wave decomposition method (PWDM) is one of the most popular
strategies for numerical solution of the quantum billiard problem. The method
is based on the assumption that each eigenstate in a billiard can be approximated
by a superposition of plane waves at a given energy. From the classical results
on the theory of differential operators this can indeed be justified for billiards
in convex domains. In contrast, in the present work we demonstrate that
eigenstates of non-convex billiards, in general, cannot be approximated by any
solution of the Helmholtz equation regular everywhere in R2 (in particular, by
linear combinations of a finite number of plane waves having the same energy).
From this we infer that PWDM cannot be applied to billiards in non-convex
domains. Furthermore, it follows from our results that unlike the properties
of integrable billiards, where each eigenstate can be extended into the billiard
exterior as a regular solution of the Helmholtz equation, the eigenstates of
non-convex billiards, in general, do not admit such an extension.

PACS numbers: 03.65.Sq, 03.65.Ge

1. Introduction

The quantum billiard problem in a domain � ⊂ R2 is defined (in units m = 1) by the Helmholtz
equation

(−� − k2)ϕ(x) = 0 E = h̄2k2/2 (1)

with Dirichlet boundary conditions

ϕ(x)|∂� = 0. (2)

The solutions En, ϕn of these equations determine the energy spectrum and the set of
eigenstates of �. Studying the properties of (En, ϕn) in quantum billiards has became a
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prototype problem in ‘quantum chaos’. A simple form of equations (1) and (2) suggests
a natural way to solve them. First, for a given energy E one looks for a set of solutions
{ψ(n)(k), n ∈ N} of the Helmholtz equation (1) in the entire plane (without any boundary
conditions). For example, {ψ(n)(k)} can be chosen as a set of plane waves: {exp(iknx), |kn| =
k, kn ∈ R

2}, or as a set of radial waves: {Jn(kr) exp(inθ), n ∈ N}. Then regarding {ψ(n)(k)}
as a basis one can search for solutions of equations (1) and (2) using the ansatz

ϕ(x) =
∑

aiψ
(i)(k, x). (3)

As a result, solving equations (1) and (2) is reduced to the algebraic problem of finding the
coefficients ai such that the linear combination (3) vanishes whenever x ∈ ∂�.

The above approach has been widely used both in analytical and numerical studies of
quantum billiards. In particular, it has been suggested by Berry in [1] to use expansion (3) with
a Gaussian amplitude distribution to represent eigenfunctions of quantum systems with fully
chaotic dynamics. This idea has been applied in numerous works to calculate various quantities
associated with eigenfunctions, e.g., autocorrelation functions [1], amplitude distributions [2],
statistics of nodal domains [3] etc. The same strategy can also be used for a numerical solution
of equations (1) and (2). In this context it was first introduced by Heller [4] with application to
the Bunimovich stadium. Since then several modifications of the method have been considered
in [5–7]. Depending on the choice of the basis in the decomposition (3) one gets, in general,
different numerical methods for solving equations (1) and (2). Here we will single out the
basis of plane waves (PW), most often used in applications. In brief we will refer to the
corresponding numerical method as the plane wave decomposition method (PWDM).

As a matter of fact, the whole strategy described above is based on the assumption that
the set {ψ(n)(k)} furnishes an appropriate basis for the expansion of solutions of equations (1)
and (2). In other words, one can use PWDM only if billiard eigenstates can be approximated
by linear combinations of plane waves. That means

‖ϕn − ψ [N]‖L2(�) → 0 as N → ∞ (4)

for some sequence of the states ψ [N] which are of the form

ψ [N] =
N∑

i=1

ai eikix ki ∈ R
2 |ki | = k. (5)

We will say that the plane wave approximation holds for a state ϕn if the limit (4) exists.
Up to now it has often been assumed that the PWDM can be applied to billiards of

arbitrary shape. From the results of Malgrange [8] (see also [9]) on the theory of differential
operators it is known that any solution of equation (1) regular in a convex open domain can
be approximated by superpositions of plane waves with ki ∈ C

2, |ki | = k. Moreover, since
each evanescent plane wave (Im ki �= 0) can be approximated in a bounded domain by plane
waves with real wavenumbers [10], one immediately gets:

Proposition 1. Let � ⊂ R2 be a convex bounded domain, then any solution of equation (1)
regular in � can be approximated by plane waves.

This shows that the eigenstates of a quantum billiard � admit PW approximation inside any
convex domain �1 ⊂ �, see figure 1(a). Hence, PW approximation always holds for billiard
eigenstates in a local sense. Furthermore, if � is a convex domain one can choose �1 in such
a way that ∂�1 is arbitrarily close to ∂�. Consequently, as a simple corollary of proposition 1
one gets:
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Figure 1. A typical convex domain (dashed line) where the PW approximation holds: (a) for a
generic billiard; (b) for the ‘cake’ billiard.

Corollary 1. Eigenstates of a convex billiard � can be approximated by superpositions of
plane waves.

The question naturally arises whether the same property holds for eigenstates of non-convex
billiards, and thus, whether the PWDM can be actually applied to the class of non-convex
billiards.

Note that there exists an important link between the PWDM and the problem of eigenstate
extension in quantum billiards. We will say that an eigenstate ϕn of a billiard � can be
extended to a domain �2 ⊃ � if there exists a regular solution ϕ̄n(x); x ∈ �2 of equation (1)
which coincides with ϕn(x) inside the domain �. Note that such an extension (if it exists) is
unique. Indeed if ϕ̄n, ϕ̄

′
n are extensions of the same eigenfunction ϕn the difference ϕ̄n − ϕ̄′

n

should vanish in an open domain and therefore (see, e.g., [9]) in all �2. Let ϕn be an eigenstate
of � which can be extended to a convex domain �2 ⊃ �. Then it follows immediately from
proposition 1 that the PW approximation holds for ϕn. The example of a billiard where each
eigenstate can be continued in a convex domain is shown in figure 1(b). This is the ‘cake’
billiard whose boundary consists of two concentric circle arcs connected by two segments of
radii at an angle α < π . In the polar coordinates x = (r, θ) the eigenstates of the ‘cake’
billiard can be written explicitly as a sum of Bessel and Neumann functions:

ϕ(m)
n (x) = (

am
n Jνm

(
k(m)

n r
)

+ bm
n Yνm

(
k(m)

n r
))

sin(νm(θ − θ0)) νm = πm

α
.

Since the singularity point of ϕ(m)
n (x) is always at the centre O of the circle arcs it is possible to

extend each eigenstate into a convex domain �2, see figure 1(b). Accordingly, any eigenstate
of the ‘cake’ billiard can be approximated by superpositions of PW.

On the other hand, assume that for a billiard � an eigenstate ϕn can be expanded in a basis
{ψ(n)} (see equation (3)), where ψ(i) are solutions of the Helmholtz equation regular in R2 (e.g.,
plane waves). If furthermore, the corresponding sum (3) converges everywhere in R2 it makes
sense to consider ϕn(x) both inside and outside �. Such extension of ϕn(x) into R2 provides
simultaneously solutions for the interior Dirichlet problem (when x ∈ �) and for the exterior
Dirichlet problem (when x ∈ �c ≡ R2/�). Based on this observation a connection (spectral
duality) between the interior Dirichlet and the exterior scattering problems has been suggested
by Doron and Smilansky in [11]. The rigorous result has been established by Eckmann and
Pillet [12]. In most general form (weak spectral duality) it could be stated as follows: En

is an eigenvalue of the interior problem if and only if there exists an eigenvalue e−iϑn of the
exterior scattering matrix S(E) such that ϑn(E) → 2π whenever E → En. Moreover, if
ϑn(En) = 2π (strong spectral duality) then the corresponding interior eigenstate ϕn could be
extended into R2 as an L2 function. Therefore, if the strong form of spectral duality holds for
some eigenenergy En then the PW approximation holds for the corresponding eigenstate ϕn.
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It has been explicitly shown that the strong form of spectral duality holds for convex integrable
billiards [13]. However, as has been pointed out in [12], strong spectral duality cannot hold
for billiards in general.

Remark. It should be pointed out that the approximability by PW is a much weaker property
than strong spectral duality. As has been explained above, strong spectral duality implies the
PW approximation for the corresponding eigenstate. The opposite, however, is not true: the
PW approximation for an eigenstate does not imply, in general, strong spectral duality. In
fact, in [10, 12] the examples of convex billiards (in this case the approximation by PW is
possible) have been constructed where the eigenstates extension into the exterior domain as
L2 functions is not possible.

2. Main results

Two different billiard maps can be associated with �. First, the standard billiard map �

corresponding to the motion of a point-like particle in the interior domain. Second, the
exterior map �c which corresponds to the scattering off � as an obstacle, see, e.g., [14]. In
order to define this map, consider the motion of a point-like particle which is injected into the
domain �c along a straight line li and undergoes specular reflection off the boundary ∂� from
outside. Let pi, pi+1 be the particle momentum before and after reflection and let qi ∈ ∂� be
the corresponding bouncing point. In general, there are two types of motions that can happen
after the particle bounces off the boundary: the particle either moves along the straight line
li+1 and collides with ∂� at the next point qi+1 (this may happen only if � is a non-convex
domain) or escapes to infinity along the line li+1. In the latter case we will assume that the
outgoing particle is re-injected as incoming along li+1 from the ‘opposite’ side (with the same
momentum pi+1) and hits the obstacle at qi+1, see figure 2(a). Then the process is iterated and
�c is defined as the map from (qj , pj ) to (qj+1, pj+1).

It should be noted that there is an essential difference between convex and non-convex
billiards. Whenever � is a convex domain the interior map � determines the same dynamics
as the exterior map �c. For any interior trajectory inside � there is a dual trajectory in �c

which travels through the same set of points on the boundary ∂�, see figure 2(a). We will refer
to this property as interior–exterior duality. In particular, for convex billiards there is one to
one correspondence between the interior and exterior periodic trajectories. For each periodic
trajectory γ , its continuation γ c into the exterior domain will be the dual periodic trajectory
of the exterior map. On the other hand, it is straightforward to see that in non-convex billiards
interior–exterior duality breaks down. Generally, in a non-convex billiard � there exist
interior periodic trajectories whose extension into the exterior domain intersects � again, see
figure 2(b). Let γ be such a trajectory and let γ c be its extension in the exterior. Note that
γ ∪ γ c is a union of straight lines in R2. Take l ⊂ γ ∪ γ c to be a line which intersects
the boundary ∂� at 2n, n > 1 points (for the sake of simplicity we will always assume that
n = 2). Then the intersection � ∩ l is the union of two disconnected segments: γ1 ⊂ γ

and γ̄1 ⊂ γ c. If γ̄1 does not belong to any periodic trajectory in �, we will refer to γ as a
single periodic trajectory (SPT). By definition any SPT has no dual periodic trajectory in the
exterior domain. In what follows, we call a non-convex billiard � generic if it contains at least
one stable (elliptic) or unstable (hyperbolic) SPT. According to this terminology the ‘cake’
billiard in figure 1(b) is non-generic, since all its periodic trajectories are of neutral (parabolic)
type.

We call a smooth function ψ(x) a regular solution of the Helmholtz equation if it solves
equation (1) everywhere in R2. For a given energy E we will denote by M(E) the set of all
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Figure 2. Breaking of interior–exterior duality. An example of a periodic trajectory (γ ): (a) in
a convex billiard; (b) in a non-convex billiard (SPT). Note that for a billiard in a convex domain,
the continuation γ c of γ into the exterior is a periodic trajectory of the exterior map while for
non-convex billiards this interior–exterior connection breaks down.

regular solutions of equation (1) and by MPW(E) ⊂ M(E) the subset of functions which can
be represented as linear combinations of a finite number of plane waves with real wavenumbers
ki, |ki |2 = 2E/h̄2. In particular, M(E) includes convergent superpositions of plane waves
(also with complex wavenumbers, i.e. evanescent modes) and radial waves with the energy E.
In its crudest form the main result of the present paper can be formulated in the following way.
Based on the breaking of interior–exterior duality we demonstrate that eigenstates of a generic
non-convex billiard (in general) cannot be approximated by regular solutions of equation (1).
Therefore, in general, PWDM fails to reproduce exact eigenstates of non-convex quantum
billiards. It is worth mentioning that, in fact, this agrees with the numerical calculations
performed in other works. In particular, in [6] the dependence of the accuracy of PWDM on
the discretization number N of PW in equation (5) was investigated for a variety of quantum
billiards. On the basis of numerical analysis it was observed there that in contrast to the
case of integrable billiards, the accuracy of PWDM for the Sinai billiard and the cardioid
billiard (which are of non-convex type) saturates at some point and does not improve when N
is increased further.

To illustrate the main idea of our approach it is instructive to consider a non-convex billiard
� with an elliptic SPT γ . It is well known that a sequence of quasi-modes (ϕ̃i , k̃i ) associated
with γ can be constructed (see, e.g., [15, 16]). Each pair (ϕ̃n, k̃n) represents an approximate
solution of equations (1) and (2) such that ϕ̃n is localized along γ . Furthermore, in the absence
of systematic degeneracies in the spectrum of � the quasi-modes (ϕ̃n, k̃n) approximate (in
the L2 sense) a sequence of real solutions (ϕn, kn) of equations (1) and (2). For each such
eigenstate ϕn let us define the corresponding Husimi function

Hϕn
(z) = |〈z|ϕn〉|2 (6)

where 〈z| denotes a coherent state localized at the point z ∈ V of the standard billiard phase
space V and 〈·|·〉 denotes the scalar product in L2(�). Note that in the coordinate-momentum
representation V is just the set of points z = (q, p) such that q ∈ � and p is restricted to the
energy shell |p|2/2 = E. Let us consider the Husimi function (6) at the energy shell E = En,
which corresponds to the eigenenergy En = h̄2k2

n

/
2 of ϕn. Then Hϕn

(z) as a function of q
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and direction of p should be localized near the line of points: z = (q, p) ∈ V , where q ∈ γ

and p is directed along γ . Now assume that ϕn could be approximated by regular solutions
of equation (1). That means for any ε > 0 there is ψε ∈ M(En) such that ‖ϕn − ψε‖ < ε,
where ‖ · ‖ denotes the L2(�) norm. In such a case one can rewrite (6) as the limit

Hϕn
(z) = lim

ε→0
|〈z|ψε〉|2

of Husimi functions for regular solutions of equation (1). Furthermore, since each ψε is an
eigenstate of the free quantum evolution operator e−it�/h̄ in R2, one has for an arbitrary t

Hϕn
(z) = lim

ε→0
|〈z| e−it�/h̄ψε〉|2. (7)

(It is important to note that in contrast to equation (6), the scalar product in equation (7) should
be understood as the scalar product in L2(R2).) In what follows we set q as a point at γ1 and
set p to be directed along γ1. It is well known (see, e.g., [18, 20]) that in the semiclassical
limit the free quantum evolution of coherent states is governed by the corresponding classical
evolution:

e−it�/h̄|z〉 = eitE/h̄|z(t)〉 + O(h̄∞) z(t) = (q(t), p). (8)

(Here the symbol O(h̄∞) has a standard meaning: f = O(h̄∞) if f = O(h̄α), for any α > 0.)
Plugging (8) into equation (7) and propagating 〈z| up to a time t when the point q(t) = q ′

belongs to γ̄1 we get

Hϕn
(z) − Hϕn

(z′) = O(h̄∞) z′ = (q ′, p) ∈ V. (9)

This, however, contradicts the fact that Hϕn
(z) as a function of the coordinate q should be

exponentially decaying outside γ .
The above argument can be extended to the case of hyperbolic SPT γ as follows. Contrary

to the elliptic case it is not possible to construct quasi-modes concentrated on hyperbolic
periodic orbits. Instead, one can use a statistical approach in that case. From the results of
Paul and Uribe [16] it is known that in the semiclassical limit h̄ → 0, the average of the
Husimi functions (6)〈

Hϕi
(z)

〉 = 1

#Pch̄

∑
En∈Pch̄

|〈z|ϕn〉|2 (10)

over the energy interval Pch̄ = [E−ch̄, E +ch̄], c > 0 with the number of states #Pch̄ depends
on whether z belongs to a periodic trajectory or not. On the other hand, as has been explained
above, if each ϕn could be approximated by a regular solution of equation (1) then each Hϕn

(z)
(and therefore the average

〈
Hϕi

(z)
〉
) would be (semiclassically) invariant along γ1 ∪ γ̄1 as a

function of q.
The preceding discussion provides an intuitive explanation why it is impossible to

approximate eigenstates of a generic non-convex billiard by a superposition of plane waves.
Speaking informally our argument says that contrary to the real eigenstates of non-convex
billiard �, any regular solution of equation (1) always ‘preserves’ interior–exterior duality. In
what follows we consider the L2(�) norm

ηn(ψ) = ‖ϕn − ψ‖ (11)

for a solution (ϕn, En) of equations (1) and (2) in � and an arbitrary ψ ∈ M(En). By
the definition ηn(ψ) measures approximability of ϕn by regular solutions of the Helmholtz
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equation. Recall that a state ϕn is approximable by PW if

inf
ψ∈MPW(En)

ηn(ψ) = 0.

Remark. Note that from proposition 1 for any ψ ∈ M(En) and any ε > 0 one can always
find ψε ∈ MPW(En) such that |ηn(ψ) − ηn(ψε)| < ε. In particular, this implies

ηmin
n ≡ inf

ψ∈M(En)
ηn(ψ) = inf

ψ∈MPW(En)
ηn(ψ). (12)

In other words, an eigenstate ϕn can be approximated by ψ ∈ M(En) if and only if it can
be approximated by PW. Therefore, in what follows one can always assume without loss of
generality that ψ belongs to MPW(En) rather than to the set M(En).

From corollary 1, ηmin
n = 0 for any eigenstate of a convex billiard. In contrast, in the body

of the paper we show that for a generic non-convex billiard, the average of ηmin
n over an energy

interval is bounded from below (in the semiclassical limit) by a strictly positive constant:

Proposition 2. Let � be a non-convex billiard with at least one stable or unstable SPT and
let (ϕn, En), n ∈ N denote the eigenstates and eigenenergies of the corresponding quantum
billiard. For any set of approximating functions {ψn ∈ M(En), n ∈ N} the average of
ηn = ‖ϕn − ψn‖, n ∈ N over the energy interval Pch̄ = [E − ch̄, E + ch̄], c > 0 satisfies

〈ηi〉 > Bh̄ + O (13)

where O = O(h̄3/2) and B is a strictly positive constant depending on the shape of �.
Moreover, if � contains a SPT γ of elliptic type then (provided the spectrum of � has no
systematic degeneracies) there exists an infinite subsequence Sγ = {(

ϕjm
, Ejm

)
,m ∈ N

}
(of a

positive density, i.e. limN→∞ #{jm|jm<N}
N

> 0) such that for any (ϕn, En) ∈ Sγ and any regular
solution ψ ∈ M(En)

ηn(ψ) > Cγ + O′ (14)

where O′ = O(h̄1/2) and Cγ is a strictly positive constant which depends only on the
geometrical properties of γ .

From (13) and (14) one immediately obtains the corollary:

Corollary 2. For a generic non-convex billiard � there exists an infinite subsequence of
eigenstates

{
ϕjn

, n ∈ N
}

such that: (1) ηmin
jn

> 0; (2) ϕjn
cannot be extended into the domain

�c (as a regular solution of equation (1)).

Obviously, this implies the following properties of a generic non-convex billiard:

• in general, eigenstates of non-convex billiards do not admit approximation by PW and
PWDM cannot be used in that case;

• the spectral duality for a generic non-convex billiard holds only in the weak form.

The paper is organized as follows. In the next section we collect several necessary facts
about coherent states. In section 4 the case of elliptic SPT is considered. First, using the
coherent states we construct a family of quasi-modes (ϕ̃n, Ẽn) associated with such trajectories.
Then, we show that the lower bound (14) holds for the eigenstates ϕn approximated by ϕ̃n.
The case of hyperbolic SPT is considered in section 5. Here we use the results of Paul and
Uribe to estimate the average 〈ηi〉 over an energy interval. Finally, in section 6 we discuss our
results and consider possible generalizations.
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3. Coherent states

3.1. Definition of coherent states

Coherent states were introduced already in the beginning of quantum mechanics and have
been used in many areas since then. The basic idea is to built a complete set of vectors of
Hilbert space localized in the phase space in both q and p directions at the scale

√
h̄. The

standard example of such states in Rd is given by the Gaussians:

uσ
z (x) = (det Im σ)

1
4 (h̄π)−

d
4 e

i
h̄

[〈p,x−q〉+ 1
2 〈x−qσ(x−q)〉] z = (q, p) (15)

where angle brackets denote the scalar product in Rd and σ is an arbitrary d × d complex
matrix with strictly positive imaginary part Im σ = 1

2i (σ − σ ∗). Note that uσ
z is a minimum-

uncertainty state centred in the phase space at the point z = (q, p) and localized around z
in an elliptic region determined by σ . In the present work we will consider a slightly more
general class of coherent states. (For a more general definition of coherent states see, e.g.,
[16].) Let ρε

q(·) be a C∞
0 function in Rd equal to one in a neighbourhood of the point q and

zero outside the sphere of radius ε centred at q. A coherent state at z = (q, p) is the vector

φσ
z (x) = ρε

q(x)uσ
z (x). (16)

It is easy to see that the coherent states (16) are semiclassicaly orthogonal:∥∥φσ
z

∥∥2 = 1 + O(h̄)
〈
φσ

z

∣∣ φσ
z′
〉 = O(h̄∞) if z �= z′. (17)

The role of the cut-off ρε
q(x) is rather technical, it allows us to define coherent states inside

compact domains. To use the vectors (16) as coherent states inside a billiard domain � one
needs that

supp
[
ρε

q(x)
] ⊂ �. (18)

3.2. Propagation of coherent states

An important property of coherent states is that their quantum evolution in the semiclassical
limit is completely determined by the corresponding classical evolution. Let H = −h̄2�/2 +
v(x) be the operator of symbol H = p2/2 + v(x) inducing the flow �t : V → V on the
phase space V . Then, as is well known (see, e.g., [18]), for any time t the propagation of the
coherent state φσ

z localized at z ∈ V is given by

e−itH/h̄φσ
z = ei(S(t)/h̄+µ(t))φ

σ(t)

z(t) + O(h̄1/2) (19)

where S(t) = ∫ t

0 (pq̇ − H(p, q)) dt is the classical action along the path z(t) and µ(t) is the
Maslov index. The parameters z(t) = �t · z, σ (t) = D�t · σ in equation (19) are determined
by the evolution of the initial data z, σ under the flow �t : z → z(t) and its derivative

D�t : σ → σ(t) = aσ + b

cσ + d
(20)

where d × d matrices a, b, c, d are the components of D�t in a given coordinate system:

D�t =
(

a b

c d

)
.

It is convenient to chose two of the 2d coordinates in the phase space V to be along the flow
and along the line orthogonal to the energy surface. Then the matrix σ can be decomposed
into σ = σ 0 ⊕ σ 1, where the scalar part σ 0 corresponds to the above two directions and
(d − 1) × (d − 1) matrix σ 1 corresponds to the orthogonal subspace. It is straightforward to
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Figure 3. Definitions of inner domain �ε ⊂ � (the dashed line indicates the boundary of �ε) and
restrictions of γ , γ1, γ̄1 to �ε .

see that in such a basis D�t acts separately on σ 1 and σ 0. In particular, D�t · σ 0 is given by
a linear transformation:

D�t · σ 0 = σ 0

uσ 0 + 1
. (21)

In the present paper we will use the above results for two types of two-dimensional flows:
free evolution on R2 under the Hamiltonian H0 (v(x) = 0) and the evolution induced by the
billiard Hamiltonian H� (v(x) = 0 if x ∈ � and v(x) = ∞ otherwise). Let us consider in
some detail the evolution of coherent states in billiards. Set � as the billiard domain. We will
denote the billiard flow by �t

� : V → V , whose action is on the standard phase space V of �.
It should be pointed out that one can use the coherent states (16) for the point z = (q, p) ∈ V

only if q is sufficiently far away from the boundary ∂�. Indeed, to satisfy condition (18) q
has to be at a distance larger than ε from the boundary. For the sake of simplicity, we will
not consider a generalized class of coherent states defined in the whole domain �, rather we
will use the states (16) but only for the interior points of �. For this purpose let us define the
inner domain �ε ⊂ � which contains all the points q of � such that the distance between q
and ∂� is larger then ε: dist(q, ∂�) � ε, see figure 3. In what follows, we will fix ε to be
small compared to the linear sizes of the billiard (but large compared to h̄1/2) and consider the
coherent states propagating under the condition that at the initial moment t1 = 0 and the final
moment t2 = t , the points z(0), z(t) belong to the domain �ε. Whenever this condition is
fulfilled one can use formula (19), where the states φσ

z , φ
σ(t)

z(t) are both of the form (16). (For the
Dirichlet boundary conditions one should also multiply the right-hand side of equation (19)
by the factor eiπn(t), where n(t) is the number of reflections at the billiard boundary along the
classical trajectory. To simplify notation, we will always include the ‘boundary’ phase πn(t)

in the coefficient µ(t).) Furthermore, if q(t) ∈ �ε for all t ∈ [t1, t2] (i.e. there is no collision
with the boundary between the times t1 and t2) then the remainder term in (19) is of the
order O(h̄∞).

3.3. Husimi functions

Let ϕn be an eigenstate of H with the eigenenergy En. Given a coherent state φσ
z one can

construct the corresponding Husimi function:

Hn(z) = ∣∣〈φσ
z

∣∣ϕn

〉∣∣2
z = (q, p) σ = (σ 0, σ 1) −iσ 0 = β > 0. (22)
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Based on the propagation formula (19) the following average over Husimi functions∑
n

f (ωn)
∣∣〈ϕn

∣∣φσ
z

〉∣∣2 =
∞∑
l=0

dlh̄
1
2 +l ωn = En − E

h̄
E = p2/2 (23)

has been calculated to the leading order by Paul and Uribe [16]. It turns out that the result
depends on whether the classical trajectory through z is periodic or not. With the application
to the Hamiltonian H� the results in [16] read as follows. Let f̃ (·) be the Fourier transform
of f . If z is not periodic under the flow �t

� then

d0 =
(

1

βE

)1/2

f̃ (0). (24)

Alternatively, if z belongs to a periodic trajectory additional terms (of the same order in h̄)
arise. In particular, for a hyperbolic periodic trajectory γ with the period Tγ the leading term
in (23) is given by

d0 =
(

1

βE

)1/2
(

+∞∑
l=−∞

f̃ (lTγ )
eil(Sγ /h̄+µγ )

cosh1/2(lλγ )

)
(25)

where Sγ = 2ETγ , λγ are the action, Lyapunov exponent of γ and µγ is the sum of the
Maslov index and ‘boundary’ phase. (Strictly speaking, equation (25) has been obtained in
[16] for a class of smooth potentials v. However, since the derivation of (25) is essentially
based on the propagation formula (19), the generalization of the above result to the billiards
is straightforward.)

4. PW approximation for eigenstates of non-convex billiards (elliptic case)

Let γ be a periodic orbit in the billiard � and let �(E) be the ‘lift’ of γ to the phase space V at
the energy E. This means �(E) is a set of the points z = (q, p) ∈ V such that q ∈ γ, p2 = 2E

and the vector p is directed along γ . Obviously, for any z ∈ �(E), �
Tγ

� · z = z, where Tγ is
the period of the trajectory. We will make use of the letter ε to denote the restriction of γ ,
�(E) to the domain �ε i.e. γ ε = {q ∈ γ ∩ �ε}, �ε(E) = {z = (q, p) ∈ �(E) : q ∈ �ε}.
Provided that γ is elliptic a set of approximate solutions (quasi-modes) ϕ̃n(x) of equations (1)
and (2) associated with γ can be constructed. The possibility of quasi-mode construction on
elliptic periodic orbits is well known. In the following we will follow the approach developed
in [16, 17] (see also [18, 20] and the references therein).

Before we turn to the construction of the states ϕ̃n(x) in billiards let us recall a general
definition for quasi-modes.

Definition. Let H be a Hilbert space and H be a self-adjoint operator with the domain D(H).
A pair (ϕ̃n, Ẽn) with ϕ̃n ∈ D(H), ‖ϕ̃n‖ = 1 and Ẽn ∈ R is called a quasi-mode with the
discrepancy δn, if

(H − Ẽn)ϕ̃n = rn with ‖rn‖ = δn. (26)

By a general theory (see, e.g., [19]) the quasi-modes (ϕ̃n, Ẽn) should be close to an exact
solution (ϕn, En) of the equation

(H − E)ϕ = 0 (27)

in the following sense. If (ϕ̃, Ẽ) is a quasi-mode with the discrepancy δ then there exists at
least one eigenvalue of H in the interval

Pδ = [Ẽ − δ, Ẽ + δ]. (28)
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Furthermore, let ν be the distance between Ẽ and an eigenvalue Ei of H outside Pδ , then

‖ϕ̃ − πνϕ̃‖ � δ

ν
(29)

where πν denotes the spectral projection operator on the part of the spectrum {En} inside the
interval (Ẽ − ν, Ẽ + ν).

Remark. In general, formula (29) implies that any state ϕ̃n approximates a superposition of
eigenstates ϕn. In order to approximate individual eigenstates of H, δn should be much less
than the energy intervals: �En = |En − En+1|,�En−1 = |En − En−1|. For two-dimensional
billiards 〈�En〉 ∼ h̄2, so the approximation of ϕn by ϕ̃n becomes semiclassically (h̄ → 0)

meaningful only if the spectrum of � has no systematic degeneracies and quasi-modes with
discrepancy δ ∼ h̄α, α > 2 can be constructed. For the quantum billiard problem a quasi-
mode construction providing δ = O(h̄∞) is known to exist [21] and for the rest of this section
we will assume that the billiard spectrum has no systematic degeneracies.

4.1. Quasi-mode construction

We will now schematically describe the construction of quasi-modes concentrated on elliptic
periodic orbits. The basic idea is to launch a coherent state along the orbit and average over
time. As can be shown, this procedure yields an approximately invariant state if the initial
state is chosen in the right way, see, e.g., [16, 20]. Let φσ

z , z = (q, p) ∈ �ε(E) be a coherent
state localized on the periodic orbit γ . We will associate with γ the state∣∣�σ

�(E)

〉 = 1

C

∫ Tγ

0
eit (E−H�)/h̄

∣∣φσ
z

〉
dt (30)

where C is fixed by the normalization condition
∣∣∣∣�σ

�(E)

∣∣∣∣ = 1 and Tγ is the period of the
classical evolution along γ : z(Tγ ) = z. The propagation formula (19) yields

(E − H�)�σ
�(E) = rγ Crγ = ih̄

(
ei(Sγ /h̄+µγ )φ

σ(Tγ )
z − φσ

z

)
+ O(h̄3/2) (31)

where Sγ is the classical action and µγ is the sum of the Maslov index and the ‘boundary’
phase after one period. Therefore, Crγ = O(h̄3/2) provided that the following conditions are
satisfied: condition 1: σ(Tγ ) = σ ; condition 2: Sγ /h̄ + µγ = 2πn for some integer n.

For each n let En, σn = (
σ 0

n , σ 1
n

)
denote solutions of conditions (1) and (2). It is possible

to show (see, e.g., [16]) that the first condition can be satisfied if and only if σ 0
n = 0 and γ is

an elliptic periodic orbit. The second condition imposes the Bohr–Sommerfeld quantization
on the quasi-energy En. When both conditions are satisfied the corresponding pair

(
En,�

σn

�(En)

)
provides the quasi-mode with the discrepancy δγ = O(h̄3/2)/C.

Remark. It should be noted that a much wider class of quasi-modes concentrated on γ can
be constructed by this method if one uses in (30) coherent states with transverse excitations
[16, 18]. For simplicity of exposition, we restrict our consideration only to the quasi-modes
without transverse excitations, whose leading order is determined by equation (30).

To construct quasi-modes with discrepancies of higher order in h̄ one has to consider the
time evolution of coherent states of a more general type. This leads to transport equations
whose solvability poses additional conditions on the quasi-energies, see [20]. From the results
of Cardoso and Popov [21], the possibility of constructing quasi-modes (Ẽn, ϕ̃n) in billiards
having discrepancy δγ = O(h̄∞) is known to exist. Let (s, y) be a coordinate system in a
neighbourhood of γ such that s is a coordinate along the trajectory and y is a coordinate in the
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orthogonal direction. Using these coordinates the leading order of (Ẽn, ϕ̃n) can be written as
follows [15, 20]:

Ẽn = En + O(h̄2) ϕ̃n(x) = eiv(x)/h̄u(x) + O(h̄) (32)

where

v(s, y) = v0(s)y
2 + O(y3) u(s, y) = u0(s) + O(y2)

and the parameters v0(s), u0(s) are determined by conditions (1) and (2):

�
σn

�(En)
(x) = eiv0(s)y

2/h̄u0(s) x = (s, y). (33)

As has been explained before, in the absence of systematic degeneracies in the billiard
spectrum one can expect that, in general, a state ϕ̃n approximates an individual eigenstate of
the billiard �. In what follows, we will denote by S̃γ the set of quasi-modes for which ϕ̃n

approximates some eigenstate ϕn (rather than a linear combination of ϕn) and by Sγ the set of
true solutions of equations (1) and (2) corresponding to S̃γ . Then from equation (29) for each
(ϕ̃i , Ẽi) ∈ S̃γ and (ϕi, Ei) ∈ Sγ we have

C1
i = ‖ϕ̃i − ϕi‖ = O(h̄∞) |Ẽi − Ei | = O(h̄∞). (34)

4.2. A lower bound for the approximation of eigenstates

The quasi-mode construction described in the previous section is quite general and can be
applied to an arbitrary elliptic periodic trajectory. In the present section we will consider
eigenstates of the billiard � from the subset Sγ , where γ is an elliptic SPT. We show that for
(ϕn, En) ∈ Sγ and any regular solution ψ ∈ M(En) of equation (1) in R2 the norm

ηn(ψ) = ‖ϕn − ψ‖ (35)

is bounded from below by

ηn(ψ) � Cγ + C1
n + O′

1 (36)

where O′
1 = O(h̄1/2) and Cγ is a positive constant determined only by geometrical parameters

of the periodic orbit. Since C1
n = O(h̄∞), this implies that the inequality (14) holds for any

(ϕn, En) ∈ Sγ .
Let γ be an elliptic SPT and let γ1, γ̄1 be as defined in section 2, see figure 3. Now fix the

parameter ε to be sufficiently small such that γ ε
1 ≡ γ1 ∩ �ε �= ∅, γ̄ ε

1 ≡ γ̄1 ∩ �ε �= ∅. We will
denote by the capital letters �1(E), �̄1(E) (respectively, �ε

1(E), �̄ε
1(E)) the corresponding

‘lifts’ of γ1, γ̄1 (respectively γ ε
1 , γ̄ ε

1 ) into the phase space V at the energy shell E. Recall that
the main idea behind the quasi-mode construction (30) is to use coherent states propagating
along a periodic orbit. By analogy, one can construct states localized on γ1 and γ̄1. Let
z(0) = z ∈ �1(E). Consider the classical evolution (both for positive and negative time)
of z under the free flow �t

0 : z → z(t) = (q(t), p(t)) in R2. Obviously, as time
evolves, the point q(t) successively crosses the boundary of �ε at the sequence of points
q1, q2, q̄1, q̄2, see figure 3. We will denote by t1, t2, t̄1, t̄2 the corresponding time moments:
q1 = q(t1), q2 = q(t2), q̄1 = q(t̄1), q̄2 = q(t̄2). Then the states localized along γ1 and γ̄1 are
given by

∣∣�σ
�1(E)

〉 = 1

Tγ1

∫ t1

t2

eit (E−H0)/h̄
∣∣φσ

z

〉
dt Tγ1 = |t1 − t2| (37)

∣∣�σ
�̄1(E)

〉 = 1

Tγ̄1

∫ t̄1

t̄2

eit (E−H0)/h̄
∣∣φσ

z

〉
dt Tγ̄1 = |t̄1 − t̄2|. (38)
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Note, that under the free evolution e−itH0/h̄ the support of φσ
z is not preserved inside �, and

therefore the supports of �σ
�1

,�σ
�̄1

do not belong to the billiard domain. However, one can
slightly modify the definition of the states �σ

�1
,�σ

�̄1
to make them admissible as billiard states

in �. Let z = z1, σ = σ1 be as before and set τ such that under the classical evolution
�τ

0 : z1 → z(τ ) the point z(τ ) = z2 belongs to �̄ε
1. Set φσ2

z2
(x) = e−iτH0/h̄φσ

z (x) + O(h̄∞) as
the coherent state in �, whose parameters are given by (σ2, z2) = (

D�τ
0 · σ1, �

τ
0 · z1). Then

the states ∣∣�̄σ
�1(E)

〉 = 1

Tγ1

∫ t1

t2

eit (E−H�)/h̄
∣∣φσ1

z1

〉
dt (39)

∣∣�̄σ
�̄1(E)

〉 = 1

Tγ̄1

∫ t̄1−τ

t̄2−τ

eit (E−H�)/h̄
∣∣φσ2

z2

〉
dt (40)

have their supports in � and satisfy∣∣�̄σ
�1(E)

〉 = ∣∣�σ
�1(E)

〉
+ O(h̄∞)

∣∣�̄σ
�̄1(E)

〉 = ∣∣�σ
�̄1(E)

〉
+ O(h̄∞). (41)

To get the lower bound (36) we are going to first construct a vector � with the property

〈ψ |�〉 = 0 + O(h̄∞) (42)

for any ψ ∈ M(E′). Let us show how such a vector can be constructed using �̄σ
�1

, �̄σ
�̄1

. Set

〈·|·〉R2 , 〈·|·〉 as the scalar products in L2(R2) and L2(�), respectively. From definitions (37)
and (38) one has〈

ψ
∣∣�σ

�1(E)

〉
R2 = 1

Tγ1

∫ t1

t2

eit (E−E′)/h̄〈ψ∣∣φσ
z

〉
dt = C1(ω)

〈
ψ

∣∣φσ
z

〉
(43)

where

C1(ω) = exp

(
i(t1 + t2)ω

2

)
2 sin(ωTγ1/2)

ωTγ1

(44)

and ω = (E − E′)/h̄. Analogously:〈
ψ

∣∣�σ
�̄1(E)

〉
R2 = C2(ω)

〈
ψ

∣∣φσ
z

〉
(45)

with

C2(ω) = exp

(
i(t̄1 + t̄2)ω

2

)
2 sin

(
ωTγ̄1/2

)
ωTγ̄1

. (46)

Furthermore, let us introduce the states∣∣�σ
1 (E,E′)

〉 = 1

C1(ω)

∣∣�̄σ
�1(E)

〉 ∣∣�σ
2 (E,E′)

〉 = 1

C2(ω)

∣∣�̄σ
�̄1(E)

〉
. (47)

Then it follows immediately from equations (43) and (45) that the vector � = �σ(E,E′),

|�σ(E,E′)〉 = ∣∣�σ
1 (E,E′)

〉 − ∣∣�σ
2 (E,E′)

〉
(48)

satisfies orthogonality condition (42).
Let (ϕn, En) ∈ Sγ be a solution of equations (1) and (2) and let (ϕ̃n, Ẽn) ∈ S̃γ be the

corresponding quasi-mode, whose leading order parameters En, σn = (
σ 0

n , σ 1
n

)
are determined

by conditions (1) and (2), see equations (32) and (33). Now fix the energy parameters in
equation (48) by E = En, E

′ = En and put σ = σ̄n, where σ̄n = (
iβ, σ 1

n

)
and β is an arbitrary

real positive number. We will make use of the vector

|�n〉 = |�σ̄n(En, En)〉
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in order to get a lower bound on ηn. For any ψ ∈ M(En) we have

‖ϕ̃n − ψ‖‖�n‖ � |〈ϕ̃n − ψ |�n〉| = |〈ϕ̃n|�n〉| + O(h̄∞). (49)

Using the triangle inequality

‖ϕ̃n − ϕn‖ + ‖ϕn − ψ‖ � ‖ϕ̃n − ϕn + ϕn − ψ‖ = ‖ϕ̃n − ψ‖ (50)

one gets immediately from (49)

ηn(ψ) = ‖ϕn − ψ‖ � |〈ϕ̃n|�n〉|
‖�n‖ − C1

n + O′
2,O′

2 = O(h̄∞). (51)

It remains to estimate the scalar product |〈ϕ̃n|�n〉| and the norm of the vector �n (note that
by definition, �n is not normalized). First, consider the norm ‖�n‖. Since γ1 ∩ γ̄1 = ∅ one
has from the definition of �n

〈�n|�n〉 = 1

|C1(ωn)|2
〈
�

σ̄n

�1(En)

∣∣�σ̄n

�1(En)

〉
+

1

|C2(ωn)|2
〈
�

σ̄n

�̄1(En)

∣∣�σ̄n

�̄1(En)

〉
+ O(h̄∞) (52)

with ωn = (En − En)/h̄. The calculations of the scalar products performed in the appendix
give

〈
�

σ̄n

�1(En)

∣∣�σ̄n

�1(En)

〉 = 1

Tγ1

(
2πh̄

βEn

)1/2

+ O(h̄)

(53)〈
�

σ̄n

�̄1(En)

∣∣�σ̄n

�̄1(En)

〉 = 1

Tγ̄1

(
2πh̄

βEn

)1/2

+ O(h̄)

and for the leading order of C1(ωn), C2(ωn) one has from equations (44) and (46)

|C1(ωn)| = 1 + O(h̄) |C2(ωn)| = 1 + O(h̄). (54)

Combining (53) and (54) together one finally gets

〈�n|�n〉 =
(

2πh̄

βEn

)1/2 (
1

Tγ1

+
1

Tγ̄1

)
+ O(h̄). (55)

In the same way for the scalar product 〈ϕ̃n|�n〉 we have from (32) and (33)

|〈ϕ̃n|�n〉| = ∣∣〈�σn

�(En)

∣∣�σ̄n

�1(En)

〉∣∣ + O(h̄) = Tγ1

Tγ

∣∣〈�σn

�(En)

∣∣�σn

�(En)

〉∣∣1/2∣∣〈�σ̄n

�1(En)

∣∣�σ̄n

�1(En)

〉∣∣1/2
+ O(h̄)

= 1

Tγ

(
2πh̄

βEn

)1/2

+ O(h̄). (56)

The estimation (36) follows now immediately after inserting equations (55) and (56) into (51).
The resulting constant Cγ , which determines the lower bound on ηn in the semiclassical limit
reads

Cγ =
√

Tγ̄1Tγ1

(Tγ̄1 + Tγ1)Tγ

=
√

�γ̄1�γ1

(�γ̄1 + �γ1)�γ

+ O(ε) (57)

where �γ̄1 , �γ1 , �γ are the lengths of γ̄1, γ1 and γ , respectively.
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5. PW approximation for eigenstates of non-convex billiards (hyperbolic case)

In the present section we consider the case of a hyperbolic SPT γ . As before, let En be
the nth eigenenergy of the billiard problem (1) and (2) and let ϕn(x) be the corresponding
eigenfunction approximated by a regular solution ψn(x) ∈ M(En) of equation (1). For an
arbitrary set of ψn(x) ∈ M(En), n = 1, 2, . . . ,∞ we will estimate the average of

ηn = ‖ϕn − ψn‖ (58)

over an energy interval. Our objective is to show that independent of the choice of ψn, in the
limit h̄ → 0 the average

〈
ηi

〉
is bounded from below by a strictly positive constant.

Let �σ
1 (E,E′),�σ

2 (E,E′),�σ (E,E′) be as in the previous section with the parameter
σ of the form σ = (iβ, σ 1), β > 0. For each integer n we will consider the states

|�n,1〉 = ∣∣�σ
1 (E,En)

〉 |�n,2〉 = ∣∣�σ
2 (E,En)

〉
(59)

and their difference

|�̃n〉 = |�n,1〉 − |�n,2〉 = |�σ(E,En)〉 (60)

which is orthogonal to any ψ ∈ M(En) up to the term O(h̄∞) (see equation (42)). In addition,
it will also be useful to introduce the vector

|�̃′
n〉 = |�n,1〉 + |�n,2〉. (61)

Note that �̃′
n is orthogonal to �̃n in the semiclassical limit.

Similarly to the case of elliptic SPT, one can make use of the vector �̃n to get a lower
bound on ηn:

ηn � |〈�̃n|ϕn − ψn〉|
‖�̃n‖

= |〈�̃n|ϕn〉|
‖�̃n‖

+ O(h̄∞). (62)

In order to estimate the right-hand side of this inequality let us consider the following
difference:

Dn = |〈�n,1|ϕn〉|2 − |〈�n,2|ϕn〉|2. (63)

Using the vectors �̃n, �̃
′
n one can rewrite Dn as

Dn = Re(〈�̃n|ϕn〉〈�̃′
n|ϕn〉∗). (64)

Hence, the following inequality follows immediately:

|Dn| � |〈�̃n|ϕn〉||〈�̃′
n|ϕn〉| � ‖�̃′

n‖|〈�̃n|ϕn〉|. (65)

Finally, since ‖�̃n‖ − ‖�̃′
n‖ = O(h̄∞), we get from (62) and (65)

ηn � |Dn|
‖�̃n‖‖�̃′

n‖
+ O1 =

∣∣∣∣ |〈�n,1|ϕn〉|2 − |〈�n,2|ϕn〉|2
〈�̃n|�̃n〉

∣∣∣∣ + O2 (66)

where the terms O1,O2 are of order O(h̄∞).
We will now use this inequality to get a lower bound for the sum of ηn over the energy

interval Pch̄ = [E − ch̄, E + ch̄], where c is a positive constant. One has straightforwardly
from (66)

∑
En∈Pch̄

ηn >

∣∣∣∣∣∣
∑

En∈Pch̄

|〈�n,1|ϕn〉|2
〈�̃n|�̃n〉

−
∑

En∈Pch̄

|〈�n,2|ϕn〉|2
〈�̃n|�̃n〉

∣∣∣∣∣∣ + O3 O3 = O(h̄∞). (67)
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Furthermore, the definition of the states �n,1,�n,2 implies

|〈�n,1|ϕn〉|2 = ∣∣〈φσ1
z1

∣∣ϕn

〉∣∣2
z1 ∈ �ε

1 |〈�n,2|ϕn〉|2 = ∣∣〈φσ2
z2

∣∣ϕn

〉∣∣2
z2 ∈ �̄ε

1

(68)

where (z1, σ1) = (z, σ ) and (z2, σ2) = (z(τ ), σ (τ )) are related by the free classical evolution
as in the previous section. As a result, the inequality (67) reads∑

En∈Pch̄

ηn >

∣∣∣∑
n

f (ωn)
∣∣〈ϕn

∣∣φσ1
z1

〉∣∣2 −
∑

n

f (ωn)
∣∣〈ϕn

∣∣φσ2
z2

〉∣∣2
∣∣∣ + O3 (69)

with ωn = (E − En)/h̄ and

f (ωn) =
{

1/〈�̃n|�̃n〉 if ωn ∈ [−c, c]
0 otherwise.

The elementary calculations (see the appendix) provide the leading order of the function
f (ωn), ωn ∈ [−c, c]:

f (ωn) = 1

〈�n,1|�n,1〉 + 〈�n,2|�n,2〉 + O(h̄∞)

= 2|p|
(πh̄β)

1
2

(
ω2

nTγ1

sin2(ωnTγ1/2)
+

ω2
nTγ̄1

sin2(ωnTγ̄1/2)

)−1

+ O(h̄0). (70)

Now we can apply to (69) the results of Paul and Uribe (see section 3). Taking into account
that z1 ∈ � while z2 does not belong to any periodic trajectory, we get from equations (24)
and (25) the following estimation for the average of ηn:

〈ηi〉 ≡ 1

#Pch̄

∑
En∈Pch̄

ηn >
1

#Pch̄

∣∣∣∣∣∣
∑
l �=0

F̃ (lTγ )
eil(Sγ /h̄+µγ )

cosh1/2(lλγ )

∣∣∣∣∣∣ + O4 (71)

where O4 = O(h̄3/2), F̃ (·) is the Fourier transform of the function

F(x) =
{(

8
π

) 1
2
( x2Tγ1

sin2(xTγ1 /2)
+

x2Tγ̄1
sin2(xTγ̄1 /2)

)−1
if x ∈ [−c, c]

0 otherwise

and #Pch̄ is the number of eigenstates in the interval Pch̄ whose leading order for a billiard of
area A is given by the Weyl formula:

#Pch̄ = Ac/2πh̄ + O(h̄0).

Consequently, if

Y =
∣∣∣∣∣∣
∑
l �=0

F̃ (lTγ )
eil(Sγ /h̄+µγ )

cosh1/2(lλγ )

∣∣∣∣∣∣ �= 0 (72)

one has from (71)

〈ηi〉 > Bh̄ + O (73)

where

O = O(h̄3/2) B = 2πY/cA > 0.

If moreover one assumes that Tγ̄1c, Tγ1c � 1, the function F(x) takes a simple form:

F(x) ≈
{(

1
2π

) 1
2

(
Tγ̄1 Tγ1
Tγ̄1 +Tγ1

)
if x ∈ [−c, c]

0 otherwise
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and the constant B can be written explicitly as

B ≈
√

2π

A

(
Tγ̄1Tγ1

Tγ̄1 + Tγ1

) ∣∣∣∣∣∣
∑
l �=0

sin(lcTγ )

lcTγ

eil(Sγ /h̄+µγ )

cosh1/2(lλγ )

∣∣∣∣∣∣ . (74)

Note, that the lower bound (73) has been obtained using only one SPT. In the case
of hyperbolic dynamics, however, the periodic orbits (and, in particular, SPT) proliferate
exponentially. Therefore, one can improve the estimation (73) making use of a vector �̃sum

n

which is concentrated on a set of SPT {γ } and satisfies equation (42). A simple way to
construct such a vector is to define it as the superposition:

�̃sum
n =

∑
{γ }

�̃n(γ ) (75)

where �̃n(γ ) stands for the vector (60) associated with a SPT γ .
Finally, let us mention that the statistical estimation (73) can be straightforwardly gener-

alized to the case of elliptic SPT. In that case one should use the analogues of equations (24)
and (25) (which are known to exist [16]) for stable periodic trajectories.

6. Discussion and conclusions

Speaking informally, proposition 2 implies that there is no on-shell basis of regular solutions
of the Helmholtz equation which can be used to approximate all eigenstates of a generic
non-convex billiard. This means any linear combination of plane waves, radial waves etc.
with the same energy fails to approximate real eigenstates of non-convex billiards. In fact, a
stronger result can be shown. Let � be a generic non-convex billiard and let �′ be a domain
(not necessarily convex) which properly contains �: �′ ⊃ �, ∂�′ ∩ ∂� = ∅. Denote by
M�′(E) the set of all solutions of equation (1) regular in �′ (note, that M�′(E) ⊇ M(E)).
Let us argue that the eigenstates of � cannot be approximated, in general, by states belonging
to M�′(E). Let γ be a SPT and let l, γ1, γ̄1 be as defined before. Furthermore, assume that
the segment of the line l between γ1 and γ̄1 is entirely in �′, see figure 4. (It seems to be a
natural assumption that in a generic case one can always find such a SPT, provided �′ properly
contains �). Then take �0 ⊂ � to be a convex domain satisfying: �0 ∩ γ1 �= ∅,�0 ∩ γ̄1 �= ∅.
Now, suppose an eigenstate ϕn of � can be approximated by states ψ ′(x) from M�′(En).
According to proposition 1 ψ ′(x) can be approximated in �0 by regular solutions of
equation (1) and thus for any ε > 0 there exists ψε ∈ M(En) such that ‖ϕn(x) −
ψε(x)‖L2(�0) < ε. Therefore, applying the same arguments as in section 2 we get

Hϕn
(z1) − Hϕn

(z2) = lim
ε→0

|〈z1|ψε〉|2 − lim
ε→0

|〈z2|ψε〉|2 = O(h̄∞)

where z1 = (q1, p) ∈ �1(En), q1 ∈ γ1 ∩ �0 and z2 = (q2, p) ∈ �̄1(En), q2 ∈ γ̄1 ∩ �0.
However, as has been pointed out before, this cannot be true for each n since z2 /∈ �.

The two properties of generic non-convex billiards follow immediately from the above
analysis. First, it is not possible to approximate eigenstates of a generic non-convex billiard �

also if one includes in the basis {ψ(n)(k)} singular solutions of equation (1), e.g., the Neumann
parts of radial waves

{Yn(k|x − xi |) einθ(x−xi ), n ∈ N}
with a finite number of singularity points xi ∈ R2. Second, there exists an infinite sequence
of eigenstates which do not admit extension into any large domain �′ properly containing �.
That means the continuation of the interior eigenstates of a generic non-convex billiard into
the exterior domain should be (in general) impossible because of singularities which occur
arbitrarily close to the billiard’s boundary. The exact nature of such singularities remains an
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Figure 4. Illustration of the arguments above. If an eigenfunction ϕn can be extended to the
exterior domain �′ (the dashed line) then the PW approximation holds for ϕn in the domain �0
(the dotted line).

open problem. (For example, whether one can, in principle, extend eigenstates beyond the
boundary of a generic non-convex billiard.) It should also be mentioned that the problem of
the eigenstates extension in convex billiards is beyond the scope of the present paper. It would
become a natural question to inquire about the relation between the billiard shape and the type
of singularities arising for the extended eigenstates. In particular, it would be interesting to
know whether the strong form of spectral duality (when it is possible to extend eigenstates in
R2 as regular solutions of the Helmholtz equation) holds exclusively for integrable billiards.

Further, let us stress an important difference between the cases of elliptic and hyperbolic
dynamics. The counting function N ∗(k) = #{ k̃n < k} for quasi-modes (ϕ̃n, k̃n) which
can be constructed on an elliptic periodic trajectory is known to be of the same asymptotic
form N ∗(k) = αk2 + O(k), α > 0 as the counting function N = Ak2/4π + O(k) for the real
spectrum {kn}, see [21]. Therefore, in a generic case, if an elliptic SPT γ exists the subsequence
{ϕjn

, n ∈ N} of billiard eigenstates approximated by the quasi-modes concentrated on γ should
be of positive density:

lim
N→∞

1

N
#{jn|jn � N} = lim

k→∞
N ∗(k)
N (k)

> 0.

Since for each ϕjn
the estimation (14) holds, that means there exists a subsequence of

eigenstates with a positive density which do not admit approximation by plane waves. In
the case of hyperbolic dynamics the statistical lower bound (13) implies, in fact, only a
weaker result. It says that an infinite sequence (possibly of zero density) of such states exists.
However, if one assumes that all eigenstates of fully chaotic billiards have ‘uniform properties’
the inequality (13) suggests a natural conjecture:

Conjecture. For a non-convex billiard with fully chaotic dynamics the set of states which can
be approximated by PW is of density zero.

Note, that it is impossible to exclude the possibility of existence of ‘exceptional’ eigenstates
(the eigenstates which can be approximated by PW) in non-convex billiards. Indeed, one can
take a finite superposition of plane waves ψ [N] (see equation (5)) and set a (non-convex) nodal
domain of ψ [N] to be the billiard’s boundary. Then the corresponding billiard has (at least)
one eigenstate ψ [N] which can be approximated by PW.

Finally, the study of the present paper is restricted to the two-dimensional simply
connected domains with Dirichlet boundary conditions. However, it is easy to see that the
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Ω γ

γ1

γ1

Figure 5. Billiard in a multiply connected domain � and a typical SPT γ .

presented results allow several rather straightforward generalizations. First, higher
dimensional billiards and different types of boundary conditions can be treated in the same
way. Second, billiards in multiply connected domains (figure 5) have the same properties as
non-convex billiards. Consequently, all the results obtained for non-convex billiards hold for
multiply connected billiards as well. Third, we conjecture that our results can be generalized
to the billiards on non-compact manifolds with non-trivial metrics (also in the presence of
a potential), e.g., billiards on the hyperbolic plane. In such a case, one needs to adjust the
notion of domain ‘convexity’ to the corresponding classical dynamics. In other words, a
domain should be defined as ‘convex’ if the interior–exterior duality holds and defined as
‘non-convex’ if it breaks down.
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Appendix

Proposition 3. Let �σ
�,�σ̄

� be the states:∣∣�σ
�

〉 = 1

C1

∫ T

0
ei(E−H0)t/h̄

∣∣φσ
z

〉
dt σ = (σ 0, σ 1)

(A.1)∣∣�σ̄
�

〉 = 1

C2

∫ T

0
ei(E−H0)t/h̄

∣∣φσ̄
z

〉
dt σ̄ = (σ̄ 0, σ̄ 1)

localized along the path � = �(E), �(E) = {�t · z = (q(t), p(t)), t ∈ [0, T ], E = p2/2}
with σ 0 = iβ1, σ̄

0 = iβ2; β1, β2 > 0 and σ 1 = σ̄ 1. Then〈
�σ

�

∣∣�σ
�

〉 = T

C2
1

(
2πh̄

β1E

)1/2

+ O(h̄)
〈
�σ̄

�

∣∣ �σ̄
�

〉 = T

C2
2

(
2πh̄

β2E

)1/2

+ O(h̄) (A.2)

〈
�σ

�

∣∣ �σ̄
�

〉 = 〈
�σ

�

∣∣ �σ
�

〉1/2 〈
�σ̄

�

∣∣�σ̄
�

〉1/2
+ O(h̄). (A.3)

Proof. The inner product〈
�σ

�

∣∣�σ̄
�

〉 = 1

C1C2

∫ T

0

∫ T

0

〈
φσ

z

∣∣ ei(E−H0)(t1−t2)/h̄
∣∣φσ̄

z

〉
dt1 dt2 (A.4)

can be written as〈
�σ

�

∣∣�σ̄
�

〉 = 1

2C1C2

(∫ T

0
(T − t)K(t) dt +

∫ T

0
(T − t)K(−t) dt

)
= 1

2C1C2

∫ T

−T

(T − |t |)K(t) dt (A.5)
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where

K(t) = 〈
φσ

z

∣∣ ei(E−H0)t/h̄
∣∣φσ̄

z

〉
. (A.6)

By the propagation formula (19) we get for (A.6)

K(t) = ei(S(t)+E)/h̄+iµ(t)
〈
φσ

z

∣∣φσ̄(t)

z(t)

〉
+ O(h̄)

= det

(
4 Im σ Im σ̄ ∗(t)
(σ − σ̄ ∗(t))2

)1/4

exp

(
− it2

2h̄

〈
p, σ̄ ∗(t)

1

σ − σ̄ ∗(t)
σp

〉)
+ O(h̄)

=
(

(β2β1)
1/4

(β2 + β1)1/2
+ O(t)

)
exp

(
− t2p2β2β1

2h̄(β2 + β1)
+ O(t3)

)
+ O(h̄). (A.7)

After inserting this expression into equation (A.5) and applying the stationary phase
approximation to the integral one gets (A.2) and (A.3). Finally, let us note that equation (A.3)
remains true also when β1 or β2 equals zero. �
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